
Above the Clouds:
New Software Challenges in Space Computing

Abstract
Satellite-backed services have become an essential com-

ponent of everyday life, in areas such as navigation, Internet
connectivity and imaging.The collapsing cost of launching to
space has disrupted the way satellites are deployed, shifting
the industry fromamodelof fewexpensive fault-toleranthigh-
orbit satellites to arrays of commodity low-cost SmallSats in
low-Earth orbit. However, satellite software hasn’t kept up
with the hardware trends, and missions are still using the ad-
hoc flight software infrastructure built for expensive one-off
missions in high-altitude orbits, wherein operators manually
deploy software to each satellite individually.This approach
is woefully inadequate in the new emerging SmallSat opera-
tionalmodel, where an operator needs tomanage hundreds of
“wimpy” satellites with varying hardware capabilities under
intermittent communication. Furthermore, SmallSat opera-
tors increasingly“rentout” their infrastructure to thirdparties,
and need to support the workloads of multiple different ten-
ants on the same satellites, which raises the classic problems
of isolation and security similar to cloud computing, but in the
much more constrained hardware environment of space. In
this paper,we describe the new research questions introduced
by this operationalmodel.We also sketch the design of a novel
lightweight eBPF-based runtime forfleets ofmulti-tenant, het-
erogeneous and intermittently-connected satellites.

CCS Concepts
•Computer systems organization→Real-time systems;
• Software and its engineering→ Software creation and
management.

Keywords
satellite computing, flight software, bytecode languages

1 Introduction
Spacecraft have become a critical, though often invisible,

component of everyday life. Beyond the reliance we all
have on GPS, Spacecraft data has been valuable in many
new fields, such as global food supply [1], web mapping [2]
and increasingly real-time weather reports [3], which help
governments prevent and rapidly react to natural disasters
such as floods and forest fires. Similarly, satellite Internet ser-
vices such as Starlink [4] and Hughes [5] provide important
lifelines for remote and disaster-struck areas. Meanwhile,
spacecraft such as the JamesWebb Space Telescope and the
Mars Perseverance rover aid in scientific discovery.

The rapid rise in spacecraft deployment has been driven
by an exponential decrease in launch costs, from $88.5K1

per kilogram in 1981 on the Space Shuttle to just $1.4K on
SpaceX’s Falcon Heavy today [6]. The reduction in launch
costs has resulted in operators moving away from few
expensive, custom-built satellites running bespoke software
stacks in favor of many cheap, commodity SmallSats running
commodity OSes such as Linux [7]. This mirrors the shift
from large expensive mainframes to clusters of commodity
servers during the rise of cloud computing.

The introduction of off-the-shelf parts has opened up an
emerging market for multi-tenant payloads, similar to how
compute is allocated in public clouds [8]. In such an arrange-
ment, clients can host their instruments onboard a vendor’s
spacecraft, saving on costs such as testing and certification [7].
Each satellite thus serves multiple different customers, all of
whomwill need to run local applications onboard the flight
computer to interface with the instruments and preprocess
data. Similar to isolation in the cloud, operators need to
ensure isolation between each tenant’s processes, while also
allowing them access to low-level hardware interfaces.

Thecurrent cloud computingparadigmof isolation through
virtualization cannot adequately address this challenge, as
the overhead from virtual machines could cause the system
to miss real-time requirements. This is further exacerbated
by the less powerful chips built for spacecraft, some of
which do not have hardware virtualization support or even
a memory management unit [7]. While previous work in the
IoT space have shown that a bytecode-based approach can be
effective at providing multi-tenancy in low-power real-time
applications [9], bytecode is far less performant than that
native code, blocking its adoption for compute-heavy use
cases such as machine learning or image recognition.

The space environment also introduces novel compute and
communications challenges. Flight software must also ingest
data fromhigh-fidelity sensors that can emit gigabytes of data
each second, while also taking into account realtime limita-
tions on various processes [10]. While these are well-studied
challenges in the cloud computing space, doing so with the
low-power processors spacecraft use [2] due to their limited
thermal and power headroom is farmore challenging.Making
matters worse, as more spacecraft are launched, bandwidth
between satellites and ground stations is becoming a critical
bottleneck [11]. This will require future spacecraft to be

1Normalized to 2024 dollars.

capable of complex onboard compute, while minimizing
runtime and staying within the spacecraft’s power envelope.

While current cloud computing paradigms assume that
nodes exist in a datacenter where compute and bandwidth is
plentiful and latency is low, these satellites are multi-tenant,
weak, heterogeneous nodes that experience intermittent con-
nectivity in low-bandwidth situations. Bringing cloud-like
multi-tenant computing to such an environment comes with
an array of technical challenges. To this end, we aim to high-
light open research questions surrounding applying systems
principles to this relatively new setting of managing vast
arrays of “wimpy” satellites running multi-tenant workloads.

Furthermore, we provide a high-level design of a new satel-
lite software runtime that enables operators to adapt to new
situations without rewriting large portions of it, while enforc-
ing isolation. To do so, a key element of our design revolves
aroundcompartmentalizing software features into extensions.
We also show how these extensions should be written in an
ISA-independent bytecode to support the heterogeneous low-
bandwidth environment that can run in a sandbox environ-
ment.Wefind that the eBPF bytecode is a promising approach
for our SmallSat use case. eBPF’s existing kernel use case em-
phasizesmemorysafetyand isolation, anextremely important
consideration for satellites. eBPF’s lightweight, cross-ISA na-
ture also reaches the performance of native binaries while
being more bandwidth-efficient than other bytecodes.
2 ExtendedMotivation

Software is critical to the correct operation of all modern
spacecraft.While the earliest satellites merely had to send out
radio pings at regular intervals, today’s flight software has a
far wider array of responsibilities, which requires significant
computational power to both plan [12] and execute. For ex-
ample, Earth observation satellites pre-process queries with
lightweightmachine learningmodels before downlinking [10,
13]. Similarly, to minimize latency, communication satellites
often run packet processing tasks before forwarding network
traffic to a ground station [11]. Deep space exploration
spacecraft also use complex image processing methods to
accurately determine their location [14].

Historically, satellite launches tended to be large, expen-
sive, one-off missions with little to no tolerance for error. As
there were relatively few active satellites at any one time, it
was possible to control each satellite manually with bespoke
software [15]. Even today, state-of-the-art satellite workflows
require teams to manually write customized sequences,
essentially a list of function calls, every day for every
satellite [16]. After executing each workflow, the satellite sits
idle until the next sequence is uploaded, which tends to occur
once a day. Recent advances in LEO SmallSats have created
four new challenges, which we outline in this section.
Intermittent connectivity. Due to their lower orbits,

SmallSats also have a lower field-of-view of the Earth.Thus,

more satellites are required in LEO constellations to provide
the same coverage compared to those in higher orbits, further
increasing the LEO SmallSat population. For example, high-
orbit constellations such as those providing GPS need only
24 satellites to provide coverage to the entire world [17]. In
contrast, Planet needs over 150 LEO SmallSats to provide full
coverage of the Earth [2] while Starlink uses over 4,000 active
SmallSats to serve its connectivity needs [18]. The current
manual approach to developing spacecraft software [13] is
inadequate for such a large number of satellites.

SmallSats also experience intermittent and sometimes
limited connectivity with ground stations, since line-of-sight
between the satellite and ground station is needed for satellite
communication and data collection [19]. Traditional satellites
are less affected by this limitation because they orbit at
altitudes 160× higher than LEO, and are thus virtually guaran-
teed to be within line-of-sight to a ground station. However,
the lower field-of-view of individual SmallSats means that
ground station connections are much more intermittent. For
example, a typical ground station will have line-of-sight to
a SmallSat orbiting above it for only ~100 seconds each day.
With traditional X-band radios operating at 4 Mbps [19], this
means we are have ~50 MB of combined upload/download
bandwidth each day. Every byte consumed by software
updates or other overhead is taken frombandwidth that could
otherwise be used to return valuable collected data to Earth.
Heterogeneous compute. The rapid developmental pace

of SmallSats [20] causes new generations of SmallSats
to be launched while previous nodes are still operating,
meaning that constellations tend to be very heterogeneous
in nature. Even the individual computers within a single
SmallSat can also use different ISAs [18], further complicating
software deployment and satellite management. Ensuring
that programs will behave consistently is of utmost priority,
as issues adapting to different ISAs have caused missions to
crash [21] or explode on launch [22].

Due to their small size, SmallSats need to work with a very
limited thermal and power envelopes, which restrict them
low-power mobile hardware instead of high-performance
datacenter counterparts [23, 24]. With limited compute
available, expensive computational overhead could lead to
real-time limitations being broken, or the spacecraft may
run out of power during the computation.Thus, any type of
software deployment on SmallSats needs to minimize both
execution time and computational overhead.
Hosted multi-tenant payloads. An emerging paradigm in

spacecraft design is hosted payload modules, where a launch
provider hosts sensors from multiple organizations on the
same spacecraft [7]. Such amodel parallelsmulti-tenant cloud
platforms, where a single bare-metal computer may host
virtual machines frommultiple clients. Organizations benefit
from sharing the costs of assembly, verification, and launch,

New Software Challenges in Space Computing

which significantly decreases the cost of a spacecraft com-
pared to launching custom-designed individual spacecraft.

This model has been proven in many NASAmissions [25–
28], where different institutions manage and operate the dif-
ferent instruments onboard a spacecraft. Commercially,many
startups are also adopting this concept, including hosted
payload providers such as Rocket Lab and Redwire Space [7].
Isolation between the client programs will be essential to
ensure that clients’ code does not interfere with one another.

However, the current state-of-the-art relies on one
monolithic binary for all tenants [16]. Updates to fix bugs or
add new features for a tenant are thus an extremely painful
process. The current method involves the tenant sending a
specification of changes to be made to the vendor, who then
implements them independently [29]. While software testing
is done on a replica of satellite before beinguplinked, these are
by nomeans formal specifications, and the testing is nowhere
near comprehensive. In fact, one suchmisinterpretation of the
specifications resulted in the total loss of a $125Mmission [21].

Recent research has also proposed bringing the cloud
computing paradigm into space to minimize the bandwidth
bottleneck on ground stations as the number of active
satellites grows [11, 30, 31].This approach involves deploying
datacenters in space, which will preprocess data collected
by other spacecraft, before forwarding requested data back
to ground stations [8]. However, the expense of launching
spacecraft, combined with the limited thermal and power
envelope in space [20], will require these space-bound dat-
acenters to rely on low-power chips without many features
available in the datacenter, such as hardware virtualization
or IOMMU.These developments call for an efficient way to
ensure safe multi-tenancy on low-power flight computers.
3 Design Requirements
Support for heterogeneous platforms. Satellite software

must address the vast array of compute elements available
to operators. Computers used within a constellation or
exploration mission vary in clock speed, memory, storage,
available co-processors, and even ISAs. With SmallSats’
very limited uplink bandwidth, writing customized binaries
for every configuration within a constellation will quickly
become infeasible. However, traditional spacecraft software
is currently written for just a single specific hardware plat-
form [32], with ad-hoc methods for interoperability between
different onboard computers [33] or SmallSat nodes [34].
Extensibility. SmallSat missions often work under con-

stantly changing conditions and mission requirements [35].
Keeping upwith such conditions often requires complex logic
that cannot be expressed with legacy sequencing approaches.
For example, one application involves coordinating SmallSats
to take successfully higher-resolution photos of a specific
location based on data from the preceding SmallSats in
the chain [36]. Historically, these maneuvers were done

manually, but doing so for hundreds or thousands of small
satellites is infeasible. Thus, satellite software must also be
extensible and seamlessly adapt to new applications.

Since ground station bandwidth is extremely limited, the
research community has also proposed solutions where
computations usually done on Earth would be done on the
satellite instead [8, 11, 13]. As it is often hard to foresee every
possible application of a satellite at its launch [33], software
updates for hardware in orbit is a routine occurrence [18].
However, as flight software is a continuously-running, hard
real-time process [37], updates require scheduling a service
blackout while new software capabilities are added [18]. To
reduce downtime from these updates, our software runtime
should ensure that component changes are seamless.
Lightweight correctness and isolation. Flight software is

a critical real-time system that spacecraft rely on for core
functions, such as navigation and positioning or propulsion
and thermal upkeep [29]. Resource starvation could also cause
critical deadlines, such as a change in orbit to avoid space de-
bris, to bemissed [38].Thus, in the compute-constrained space
environment, we need to ensure that program components
do not take up an inordinate amount of compute time.

Failures in flight software have often resulted in explo-
sive mission failures [21, 22, 39]. However, as SmallSats are
“wimpier” nodes than high-orbit satellites, they often do not
have strong per-node fault tolerance, rather relying on failing
over to the rest of the constellation to maintain uptime [40].
This still represents a significant cost to constellation opera-
tors, as each failed node still costs tens of thousands of dollars
to build and launch.Thus, flight software must ensure that er-
rors should be isolated to its component in a lightweight way.

In amulti-tenant flight software system, each tenant should
not be able to access another tenant’s memory space, or have
errors propagate past the protection boundary. To this end,
memory safety and isolation of components are a foremost
priority for satellite software. Traditionally, spacecraft
operators have only addressed memory safety by disallowing
dynamic memory allocation in their software development
guidelines. However, this approach greatly limits the extensi-
bility of the software. Adapting modern systems approaches,
such as enforcingmemory and type safety [41],may provide a
lightweightway toensure isolationanderrorprotectionwhile
also allowing the software to adapt to changing requirements.
4 Bytecode-Based Runtime

We thus propose a design that replaces the old sequencing-
based hardware-dependent design with an extension-based
design using a bytecode runtime. Such a design can ensure
multi-tenant isolation, while keeping the safety constraints
of flight software and improving deployment times.
High-level tasks run in a userspace sandbox. As shown in

Figure 1, our design divides a satellite’s software capabilities
into high-level bytecode extensions and low-level native

Flight Software Binary

OS Kernel

Guidance,
Navigation &

Control

Traditional Satellite Software Design

Sandboxed Runtime Design

OS Kernel

Instrument
Drivers

Telemetry &
Data

Management

Attitude
Control &

Propulsion

Thermal &
Power Control

Command &
Data Handling

Instrument-
Specific
Routines

Instrument
Drivers

Telemetry &
Data

Management

Attitude
Control &

Propulsion

Thermal &
Power Control

kernel

userspace

kernel

userspace

bytecode
sandbox

Figure 1: Extension-style satellite software design
compared to traditional approach. Blue and green
boxes represent native kernel and userspace code
respectively, white boxes are bytecode that runs in a
userspace sandbox, and the red dotted line represents
a protection boundary.
code. Low-level capabilities interface directly with hardware
and provide APIs for high-level capabilities to use the
hardware, and thus need to be expressed in native code. On
the other hand, high-level capabilities such as planning and
decision-making, which do not involve hardware at all, will
be isolated within a sandbox running in userspace.

As the vast majority of software changes in real-world
spacecraft missions also modify high-level code, expressing
it in a bytecode runtime can further lower update bandwidth
requirements. We examined the flight software of two
real-world NASA missions, containing 8.4 and 4.6 million
lines of code. We found that in both repositories, ∼15% of the
code represents high-level behaviors,which donot directly in-
terface with devices. Of all lines changed by software updates
deployed to these spacecraft, ∼85% of themwere changes to
the aforementioned high-level code.Therefore, we can con-
clude that the high-level code changes much more frequently
than the “base layer” code, which remains relatively stable.

When using bytecode, the binary also no longer needs to
restart after updating, minimizing service disruption [18].

Safety constraints. Thenaive approach of dynamically load-
ingshared libraries introducesadditionalvalidationandsafety
headaches. As shared libraries essentially contain “black-box”
code, allowing them to be linked into the memory space of
a critical flight software process in a multi-tenant environ-
ment presents a security and correctness threat. In contrast,
an isolated, verified bytecode satisfies real-time and safety
constraints in flight software. Verification can ensure that the

bytecode will terminate and does not access memory out-of-
bounds [42].The effort needed for the program to pass vali-
dation can be offloaded to the tenants, rather than the hosted
payload provider. Bytecode also allows the provider to easily
insert checkpoints to ensure that deadlines are not missed.

Easing deployments to heterogeneous constellations. Instead
of uploading a different binary for each flight computer’s
hardware configuration, we can instead send a single
bytecode that works across all configurations in the constel-
lation, saving precious uplink bandwidth, as well as greatly
simplifying the task of satellites propagating the updates
peer-to-peer. As satellites travel in a train formation, every
node in the constellation will always be able to communicate
with at least the nodes ahead and behind it, like a linked
list. This allows for far more flexibility in scheduling data
transfers compared to the limited amount of uplink windows
available for ground-to-space transfers.

To motivate this design, we simulate update propagation
across a constellation of 150 SmallSats at an altitude of 400km
equippedwith state-of-the-art VHF radios [7] capable of inter-
satellite communication and a ground station at 42°N latitude.
Figure 3 shows the time to send a 50MB update for one to four
different hardware configurations requiring unique binaries
across ten trials, starting at a random time between two trans-
mission windows.The update time increases as more configu-
rationsneed tobe supported, since theground stationneeds to
uplinkeachversionof theupdate toat leastoneof thesatellites,
but it can attain line-of-sight to the constellation only a few
times each day.Thus, it is more efficient to uplink the binary
foroneconfigurationata time, sinceonceanybinaryupload to
a satellite completes, it can be distributed and applied to other
satellites with similar configurations between uplink win-
dows.The results show that even updating 2 configurations
becomes prohibitively expensive, taking almost two days in
our simulation due to the limited bandwidth.This might be a
significant issue for LEO satellite operators, which may need
to push changes to their satellites multiple times a day.

5 Comparison of Bytecode Runtimes
We aim to build upon an existingwell-defined runtime that

can benefit from community support, as building a new byte-
code runtime requires vast developmental efforts. We thus
evaluated how three widely-used bytecode runtimes fit our
design requirements (§3). We found that across a variety of
dimensions listed in Table 1, uBPF, a JIT-capable runtime for
eBPF, is the most promising runtime to use as our foundation.
However, significant gaps remain in uBPF’s current capabili-
ties before it is ready to be a runtime for vast arrays of wimpy
satellites. We now dive into the details of our comparison.
Benchmarks. We considered three popular bytecode run-

times for embedded devices: Java on OpenJDK,Webassembly
onWasmtime, and eBPF on the uBPF userspace runtime. As

New Software Challenges in Space Computing

HW AES
Accelerator

Hardware
FPU

SIMD

Figure 2: Comparison of execution time and binary size of common bytecode runtimes. The closer to the lower
left a runtime is, themore optimal it is. Red labels show gaps in eBPF’s ISA that are open challenges described in §6.

0 1 2 3 4 5
Number of Hardware Configurations in Constellation

0

1

2

3

4

5

Up
da

te
 T

im
e

(d
ay

s)

Update Propagation in a SmallSat Constellation

Figure 3: Time needed for a 50MB software update to
uplink and propagate to a constellation of 150 Small-
Sats, each with 3Mbps radios and one ground station.

Feature Native OpenJDK wasmtime uBPF
Cross-ISA Ø Ø Ø
Safety & Isolation Ø Ø Ø
Termination Ensured Ø
Small Binary Size Ø Ø
Efficient on Low-Power Ø Ø
Floating-Point Ø Ø Ø OC
SIMD Support Ø Ø OC

Table 1: Comparison of candidate bytecodes and
features important for use on satellites. Entries labeled
OC are open challenges outlined in §6.
shown in Figure 2, we run three benchmarks that reflect com-
mon software onboard spacecraft.The first is a navigational
workload tested on real-world spacecraft [14] which relies
on integer operations across large matrices.The second runs
10M rounds of AES encryption, which ensures the integrity
and security of spacecraft communication. Our final test tests
10Mmultiplications of a 10x10 floating-point matrix, a task
underlying critical operations such as state estimation with
Kalman filters, and a key component of neural networks.

Binary size (upload time). Thefirst dimensionwe compared
the runtimes is on the sizeof thebinaryorbytecode thatwould
need to be uploaded to space. We found that native binaries
are larger than bytecode since helper functions provided in
bytecode runtimes need to be included in the native binary.
Java bytecode sizes tend to be smaller than Wasm, as Java
provides a large standard library that is not included in the

binary. Even though a portion of the C standard library was
included in both eBPF andWasm bytecode, we find that eBPF
tends to be much more compact than Wasm, since Wasm’s
stack machine format adds significant size to the binary.
Execution time. Native binaries unsurprisingly are much

faster than JIT-compiled bytecode in terms of execution time.
Wasmtime consistently had the longest executions, which
previous work attributes to its stack structure [43], which
adds considerable overhead to the JIT and emits suboptimal
native instructions. OpenJDK’s poor performance is because
the JIT is triggered as a function of how frequently a code
section is executed, meaning that JIT-ting happens in parallel
with execution [44].The low-power ARMCPU used in this
benchmark was unable to effectively handle this compute
load. In contrast, uBPF efficiently precompiles bytecode
before execution, saving expensive interpretation cycles
for integer operations [45], as in the image processing task.
However, its performance suffers when programs need to
use more specialized pipelines, which we discuss below.
Hardware support. Due to their open-source nature,

all three bytecodes have well-supported interpreters for
common spacecraft ISAs, such as ARM, x86, and PowerPC.
However,wenote that Javamaynot be suitable for low-power
devices due to the high JIT overhead. Similarly, Wasm is
expensive to translate to native ISAs, as it uses a stack ma-
chine architecture that differs from the register-based native
ISAs.This adds inescapable overhead, as the JIT must run an
expensive register allocation pass when translating to native
code [46], and the register allocation may be less efficient
than one generated by a full compiler such as LLVM. In
comparison, eBPF’s ISA is register-based and easilymappable
to all host ISAs, whichmakes JIT translation fast and efficient.

The importance of architecture-aware programming is
highlighted by the results of the encryption and matrix multi-
plication benchmarks.Thenative codewas able to take advan-
tage of ARM’s NEON pipelines and encryption accelerators,
which significantly reduces its execution time. While both
Java andWasm could take advantage of the host FPU in the
matrix multiplication benchmark, eBPF’s ISA has no floating
point extension.This required us to write a software floating
point library, which executes floating point operations as

uBPF O0 O1 Oz O3
Optimization Level

0

5

10

15

20

25
Co

m
pi

le
 T

im
e

(m
s)

Figure 4: Time for uBPF and LLVM to compile eBPF
bytecode for an image processing algorithm to native
RISC-V, at various optimization levels.
multiple ALU instructions.This requires manymore cycles
per operation, and incurs a heavy execution time penalty.
Safety and isolation. Unlike native binaries, all three run-

times provide a meaningful measure of isolation with built-in
protections. As for memory safety, both Wasm and Java
assume that code is untrusted.They rely on expensive runtime
checks to safely run untrusted code [47], but many potential
exploits still remain [48].While there has been some previous
work in runtime safety solutions for bytecodes [9, 49], they
usually rely on interpreting bytecode to ensure memory
safety, which incurs a significant performance impact.

Rather than relying on runtime protections, eBPF employs
a verifier which ensures that all pointer arithmetic is valid
and in bounds before program execution. The verifier also
makes sure that eBPF programs will terminate, which rules
out a destructive class of bugs for spacecraft. Verification can
occur on the ground before the functions are uploaded to the
satellites, minimizing the onboard performance impact [50].
Results summary. By using a RISC ISA that closely mir-

rors popular hardware ISAs, eBPF achieves small binary sizes
while remaining fast on low-powerdevices, outclassingWasm
and Java. eBPF’s verifier also guarantees safety and termina-
tionproperties that other runtimes donot.Though it currently
lacks support for floating-point and SIMD pipelines, support
for these canbe added to eBPFbyextending the ISA. eBPF thus
has the potential to become an ideal bytecode for satellite soft-
ware systems, though challenges remain that we outline in §6.
6 Open Challenges

WhileaneBPFuserspace runtime is apromising foundation
for a satellite runtime, significant open challenges remain.

Optimizing instruction selection. To be useful for spacecraft
control, eBPFmust support native floating-point calculations.
Though compilers can automatically select an optimal
instruction set for native binaries using semantics in the
source code such as live variables and loop invariants, these
semantics are lost when the code is translated to a low-level
bytecode or native assembly.Thus, JIT compilers do not have
enough information to translate bytecode to more optimized
pipelines without reverse-engineering these semantics with

expensive algorithms.This can be seen in Figure 4, where di-
rectly translating instructions is far more efficient than using
traditional compiler techniques, even without optimization.

An open research question involves how to incorporate
metadata into bytecode to provide the JIT compiler with
additional insight into the original semantics. To meet power
constraints, we need to minimize the amount of operations
the JIT compiler does during the translation stage. However,
we are also limited by the amount of metadata we can include,
due to the very limited uplink bandwidth available.This de-
sign space thus involves a trade-off between the level of detail
we can include in the bytecode while still remaining storage-
efficient. For vectorization, a potential method could cache
addresses of vectorization candidates and add inner loops to
mimic SIMD form, minimizing the work the JIT needs to do.
Scheduling multi-tenant jobs with real-time constraints.

eBPF needs to be adapted to the real-time environment space-
craft operate in. Space is full of hard real-time deadlines, such
as time-limited transmissionwindows and short flyover times.
Withmultiple tenantswith varying deadlines to dealwith and
a low-power computer hosting it all, some lightweight, perfor-
mant fair-share orQoS schedulerwill need to be implemented,
that can efficiently and fairly allocate scarce resources such
as CPU, memory, network bandwidth and energy.

This scheduling may also need to be distributed across
multiple satellites in a constellation. For example, the same
transmission window or flyover target can be visible to
successive satellites in a train formation at different times.
Most workloads will simply require at least one, but not all of
the satellites to do work during the flyover [36]. Furthermore,
each node can only communicate with a limited number
of their peers, and higher failure rates in space may mean
that these peers may not stay consistent. Thus, developing
efficient inter-satellite scheduling for the intermittently
connected space environment will be essential to enabling
the next generation of satellite compute.
Radiation hardening. Elevated radiation levels in space

can cause silent data corruption (SDC) on spacecraft
computers [51]. To remain performant but cheap, SmallSat
compute elements often lack the radiation hardening afforded
to their high-orbit counterparts [7].Thus, a runtime should
also include software protections against radiation-induced
SDC, a relatively unexplored area in systems research [52].

eBPF’s safety properties partially addresses this issue.
For example, the termination guarantee can detect SDCs
that cause hangs, while the runtime can detect corruptions
in pointer addresses as invalid accesses. However, SDC in
execution data could still result in incorrect results, and
triplicating the runtime, though effective, but may be too
expensive computationally. Detecting and fixing SDCs in
a single-threaded manner, all without breaking real-time
guarantees, remains an open challenge.

New Software Challenges in Space Computing

References
[1] I. E.Mladenova et al. “Evaluating the operational application of SMAP

forglobal agriculturaldroughtmonitoring”. In: IEEEJournal of Selected
Topics in Applied Earth Observations and Remote Sensing 12.9 (2019),
pp. 3387–3397.

[2] C. Boshuizen et al. “Results from the Planet Labs Flock Constellation”.
In: (2014).

[3] L. Scheck, M.Weissmann, and L. Bach. “Assimilating visible satellite
images for convective-scale numerical weather prediction: A case-
study”. In:Quarterly Journal of theRoyalMeteorological Society 146.732
(2020), pp. 3165–3186.

[4] F. Michel et al. “A first look at starlink performance”. In: Proceedings
of the 22nd ACM Internet Measurement Conference. 2022, pp. 130–136.

[5] Hughes andOneWebAnnounceAgreements for LowEarthOrbit Satellite
Service in U.S. and India. https://www.hughes.com/resources/press-
releases/hughes-and-oneweb-announce-agreements-low-earth-
orbit-satellite-service-us. 2021.

[6] H. Jones. “The recent large reduction in space launch cost”. In: 48th
International Conference on Environmental Systems. 2018.

[7] B. Yost and S. Weston. State-of-the-art small spacecraft technology.
Tech. rep. 2024.

[8] N. Bleier et al. “Space Microdatacenters”. In: Proceedings of the 56th
Annual IEEE/ACMInternational SymposiumonMicroarchitecture. 2023,
pp. 900–915.

[9] R. Liu, L. Garcia, and M. Srivastava. “Aerogel: Lightweight access
control framework for webassembly-based bare-metal iot devices”.
In: 2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE. 2021,
pp. 94–105.

[10] B. Denby et al. “Kodan: Addressing the computational bottleneck
in space”. In: Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3. 2023, pp. 392–403.

[11] D. Bhattacherjee et al. “In-orbit computing: An outlandish thought
experiment?” In: Proceedings of the 19th ACMWorkshop on Hot Topics
in Networks. 2020, pp. 197–204.

[12] S. Kuhn. “Thermal is the Plan the Plan is Death: Deployment of the
Mars 2020 On-Board Planner”. In: 2024 IEEE Aerospace Conference.
IEEE. 2024, pp. 1–21.

[13] B. Tao et al. “Known Knowns and Unknowns: Near-realtime Earth
Observation ViaQuery Bifurcation in Serval”. In: 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24).
2024, pp. 809–824.

[14] J. Nash et al. “Censible: A Robust and Practical Global Localization
Framework for Planetary Surface Missions”. In: IEEE International
Conference on Robotics and Automation (2024).

[15] V. Z. Sun et al. “Evolution of the Mars 2020 Perseverance Rover’s
Strategic Planning Process”. In: 2024 IEEE Aerospace Conference. IEEE.
2024, pp. 1–16.

[16] R. Bocchino et al. “F Prime: an open-source framework for small-scale
flight software systems”. In: (2018).

[17] T. H. Dixon. “An introduction to the Global Positioning System and
some geological applications”. In: Reviews of geophysics 29.2 (1991),
pp. 249–276.

[18] A. Badshah, N. Morris, and M. Monson. “Over-The-Vacuum Update –
Starlink’s Approach for Reliably Upgrading Software onThousands
of Satellites”. In: Small Satellite Conference. Aug. 2023.

[19] P.A. Ilott. “CommunicationswithMars:ABrief and InformalHIstory”.
In: 2021 Space-Terrestrial Internetworking workshop (STINT) (2021).

[20] W. A. Powell. “High-performance spaceflight computing (hpsc)
project overview”. In: Radiation Hardened Electronics Technology
Conference (RHET) 2018. GSFC-E-DAA-TN62651. 2018.

[21] M. I. Board.Mars Climate Orbiter Mishap Investigation Board Phase I

Report November 10, 1999. 1999.
[22] M.Dowson. “TheAriane5software failure”. In:ACMSIGSOFTSoftware

Engineering Notes 22.2 (1997), p. 84.
[23] J. Murphy et al. “Deploying Machine Learning Anomaly Detection

Models to Flight Ready AI Boards”. In: Proceedings of the IEEE/CVF
Conference onComputerVision andPatternRecognition. 2024, pp. 6828–
6836.

[24] E. R. Dunkel et al. “Benchmarking deep learning models on myriad
and snapdragon processors for space applications”. In: Journal of
Aerospace Information Systems 20.10 (2023), pp. 660–674.

[25] G.Chin et al. “Lunar reconnaissance orbiter overview:The instrument
suite and mission”. In: Space Science Reviews 129 (2007), pp. 391–419.

[26] J. P. Grotzinger et al. “Mars science laboratory mission and science
investigation”. In: Space science reviews 170 (2012), pp. 5–56.

[27] K. A. Farley et al. “Mars 2020 mission overview”. In: Space Science
Reviews 216 (2020), pp. 1–41.

[28] R.T.Pappalardoetal. “Scienceoverviewof theEuropaclippermission”.
In: Space Science Reviews 220.4 (2024), p. 40.

[29] D. Dvorak. “NASA study on flight software complexity”. In: AIAA
infotech@ aerospace conference and AIAA unmanned… unlimited con-
ference. 2009, p. 1882.

[30] Y. Michalevsky and Y. Winetraub. “WaC: SpaceTEE-Secure and
Tamper-Proof Computing in Space using CubeSats”. In: Proceedings
of the 2017Workshop on Attacks and Solutions in Hardware Security.
2017, pp. 27–32.

[31] S. K. Johnson et al. “Gateway–a communications platform for lunar
exploration”. In: 38th International Communications Satellite Systems
Conference (ICSSC 2021). Vol. 2021. IET. 2021, pp. 9–16.

[32] G. E. Reeves and J. F. Snyder. “An overview of the Mars exploration
rovers’ flight software”. In: 2005 IEEE International Conference on
Systems, Man and Cybernetics. Vol. 1. IEEE. 2005, pp. 1–7.

[33] V. Verma et al. “Enabling Long & Precise Drives forThe Perseverance
Mars Rover via Onboard Global Localization”. In: 2024 IEEE Aerospace
Conference. IEEE. 2024, pp. 1–18.

[34] J. A. Gutierrez Ahumada, K. Doerksen, and S. Zeller. “Automated fleet
commissioning workflows at Planet”. In: (2021).

[35] J.Masonet al. “Orbital debris–debris collisionavoidance”. In:Advances
in Space Research 48.10 (2011), pp. 1643–1655.

[36] Z. Cheng et al. “EagleEye: Nanosatellite constellation design for high-
coverage, high-resolution sensing”. In: Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1. ASPLOS ’24. La Jolla,
CA, USA: Association for Computing Machinery, 2024, pp. 117–132.
isbn: 9798400703720. doi: 10 . 1145 / 3617232 . 3624851. url: https :
//doi.org/10.1145/3617232.3624851.

[37] T.Durkin. “What theMediaCouldn’t Tell YouAboutMars Pathfinder”.
In: Robot Science & Technology 1 (1998).

[38] N. G. Leveson. “Role of software in spacecraft accidents”. In: Journal
of spacecraft and Rockets 41.4 (2004), pp. 564–575.

[39] A. Albee et al. “Report on the loss of the Mars Polar Lander and Deep
Space 2 missions”. In: (2000).

[40] J. Cappaert et al. “Constellation modelling, performance prediction
and operations management for the spire constellation”. In: (2021).

[41] A. Levy et al. “Multiprogramming a 64kb computer safely and effi-
ciently”. In: Proceedings of the 26th Symposium on Operating Systems
Principles. 2017, pp. 234–251.

[42] E.Gershuni et al. “Simpleandprecise static analysis ofuntrustedLinux
kernel extensions”. In: PLDI 2019. Phoenix, AZ, USA: Association for
Computing Machinery, 2019, pp. 1069–1084. isbn: 9781450367127.
doi: 10.1145/3314221.3314590. url: https://doi.org/10.1145/3314221.
3314590.

https://www.hughes.com/resources/press-releases/hughes-and-oneweb-announce-agreements-low-earth-orbit-satellite-service-us
https://www.hughes.com/resources/press-releases/hughes-and-oneweb-announce-agreements-low-earth-orbit-satellite-service-us
https://www.hughes.com/resources/press-releases/hughes-and-oneweb-announce-agreements-low-earth-orbit-satellite-service-us
https://doi.org/10.1145/3617232.3624851
https://doi.org/10.1145/3617232.3624851
https://doi.org/10.1145/3617232.3624851
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590

[43] Y. Yan et al. “Understanding the performance of webassembly applica-
tions”. In:Proceedingsof the21stACMInternetMeasurementConference.
IMC ’21. Virtual Event: Association for Computing Machinery, 2021,
pp. 533–549. isbn: 9781450391290. doi: 10.1145/3487552.3487827. url:
https://doi.org/10.1145/3487552.3487827.

[44] T. Suganuma et al. “Overview of the IBM Java just-in-time compiler”.
In: IBM systems Journal 39.1 (2000), pp. 175–193.

[45] S. Kubica andM. Kogias. “`BPF: Using eBPF forMicrocontroller Com-
partmentalization”. In: Proceedings of the ACM SIGCOMM 2024Work-
shop on eBPF and Kernel Extensions. 2024, pp. 23–29.

[46] K. Zandberg et al. “Femto-containers: lightweight virtualization and
fault isolation for small software functions on low-power IoT micro-
controllers”. In: Proceedings of the 23rd ACM/IFIP International Middle-
ware Conference. Middleware ’22.Quebec, QC, Canada: Association
for Computing Machinery, 2022, pp. 161–173. isbn: 9781450393409.
doi: 10.1145/3528535.3565242. url: https://doi.org/10.1145/3528535.
3565242.

[47] J. Dejaeghere et al. “Comparing Security in eBPF andWebAssembly”.
In: Proceedings of the 1st Workshop on EBPF and Kernel Extensions.
eBPF ’23. New York, NY, USA: Association for ComputingMachinery,

2023, pp. 35–41. isbn: 9798400702938. doi: 10.1145/3609021.3609306.
url: https://doi.org/10.1145/3609021.3609306.

[48] C. Disselkoen et al. “Position paper: Progressive memory safety for
webassembly”. In: Proceedings of the 8th International Workshop on
Hardware and Architectural Support for Security and Privacy. 2019,
pp. 1–8.

[49] M. Research. DeviceScript - TypeScript for Tiny IoT Devices. https :
//github.com/microsoft/devicescript. 2022.

[50] M. Craun, A. Oswald, and D.Williams. “Enabling eBPF on Embedded
SystemsThrough Decoupled Verification”. In: Proceedings of the 1st
Workshop on EBPF and Kernel Extensions. eBPF ’23. New York, NY,
USA: Association for Computing Machinery, 2023, pp. 63–69. isbn:
9798400702938. doi: 10.1145/3609021.3609299. url: https://doi.org/
10.1145/3609021.3609299.

[51] E. Normand. “Single-event effects in avionics”. In: IEEE Transactions
on nuclear science 43.2 (1996), pp. 461–474.

[52] H. Wang et al. “Mars Attacks! Software Protection Against Space
Radiation”. In: Proceedings of the 22nd ACMWorkshop on Hot Topics in
Networks. 2023, pp. 245–253.

https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3528535.3565242
https://doi.org/10.1145/3528535.3565242
https://doi.org/10.1145/3528535.3565242
https://doi.org/10.1145/3609021.3609306
https://doi.org/10.1145/3609021.3609306
https://github.com/microsoft/devicescript
https://github.com/microsoft/devicescript
https://doi.org/10.1145/3609021.3609299
https://doi.org/10.1145/3609021.3609299
https://doi.org/10.1145/3609021.3609299

	Abstract
	1 Introduction
	2 Extended Motivation
	3 Design Requirements
	4 Bytecode-Based Runtime
	5 Comparison of Bytecode Runtimes
	6 Open Challenges

